
Home Research Library Articles Business Intelligence (BI)

Taking Multilingual Support to the Next Level
Ketharaman Swaminathan - August 17, 2009

Traditionally, multilingual software applications and Web sites allowed users to select a language from a list
containing multiple languages at the set-up and log-in stage. The language was then installed and displayed on all
screens, menus, and help text. That sufficed when the application's use was confined to a single language at a
time.

With the increasing globalization of the twenty-first century, co-workers who are spread across many countries in
multinational corporations need to work cohesively as one unit. The traditional level of multilingual support no
longer suffices. Multinational corporations need the next level of multilingual functionality from their software
applications to boost productivity and, in some cases, even meet compliance with local regulations.

Product managers in product companies and solution architects of custom-developed applications can enhance
the marketability of their software applications by creating a roadmap for incorporating the sophisticated
multilingual requirements that such multinational corporations need.

Multilingual Support in Software Products

Let's take the case of an analysis and research application for European asset management companies (AMCs)
spread across France, Germany, Italy, Spain, the United Kingdom (UK), and other European countries.

It would be typical for a branch of one such AMC in one country to have employees belonging to another (e.g., the
Paris office would have a few German employees). As a result, not only would the product be expected to support
multiple languages (e.g., French and German), but it would need the capability to permit an employee to choose
the language (e.g., German) instead of installing the French-language version by default.

In many AMCs, investment recommendations for funds traded in one country would need the approval of the chief
investment officer (CIO), located at the headquarters in another country, before they could be presented to
customers. This means that after logging into the application in the German language, the asset manager in the
AMC's Frankfurt office might need to switch over to the English language later while reviewing the data with his
UK-based CIO prior to obtaining his or her approval. Once the approval is obtained, it might be necessary to
recast all data, reports, and charts into the French language before presenting them to a prospective customer in
Paris as part of an investment recommendation. Therefore, the application should not restrict users to the
language chosen at the time of logging in, but let them toggle between multiple languages "on the fly."

Apart from the multilingual screens, menus, and help features, the application will have to cater to data entry,
querying, and reporting needs in the different supported languages. This means support for various accents such
as the German umlaut, French grave, acute, cedilla, circumflex, and the Spanish tilde. In addition, sensitivity to
different date formats such as 15 June 2006 in the UK versus 15. Juni 2006 in Germany; and decimal separators
such as a comma in the UK versus a period in Continental Europe (e.g., 1,000 versus 1.000) are respectively
prevalent in different European languages.

Now, when a London-based asset manager queries for all French funds containing a certain letter in their name,
he or she would expect the application to return funds containing not just that letter by itself but its various
applicable accents like acute (e.g., "ć"), grave (e.g., à), cedilla (e.g., ç), and circumflex (e.g., ĉ). This means that
the application will need to support multilingual query literals, characters, and messages.

Design and Technology for the Software Product Manager

While different technologies are available to implement the next level of multilingual support in software
applications, we examine one design approach based on .NET's technology elements.

Satellite assemblies can be used to provide multilingual support for menus since they contain localized resources.
Microsoft Developer Network defines a satellite assembly as follows:

Page 1 of 3Taking Multilingual Support to the Next Level

Monday, August 17, 2009http://www.technologyevaluation.com/Research/ResearchHighlights/BusinessI...

A .Net framework assembly containing resources specific to a given language. Using satellite
assemblies, [the developer] can place the resources for different languages in different
assemblies, and the correct assembly is loaded into memory when the user opts to use that
specific language.

Using satellite assemblies, designers can place resources for different languages in different assemblies.
Depending upon the language selected by the user, the corresponding assembly will get automatically loaded into
memory. The application will need to incorporate individual satellite assemblies for each specific culture (the
combination of a particular language with a particular country). For example, the culture "fr-FR" refers to the
French language as used in France, whereas "fr-CA" refers to the French language used in Canada. These
satellite assemblies can be placed in a specific location and loaded by the parent framework based on the culture
setting of the software.

Support for multilingual messages can be provided by storing the culture-specific user messages in separate
culture-specific message files (one file per culture). Message files appropriate to the specific culture setting of the
software will be used to retrieve and display messages to the user.

By leveraging the locales facility, developers can build support for different date formats and decimal separators.
Microsoft Developer Network defines a locale as follows:

A collection of rules and data specific to a language and a geographic area. Locales include
information on sorting rules, date and time formatting, numeric and monetary conventions, and
character classification.

While the user-selected default locale would be applied by default to all information presented to the user, the
user can also select any other locale from a list of pre-defined locales to view the same information in another
format.

Multilingual support for special characters in queries can be incorporated by maintaining separate culture-specific
mapping files (one file for each culture). A mapping file maps a character in the chosen culture to the special
accent characters in the other cultures supported by the software. The application would scan the mapping file
corresponding to the language setting (culture) of the software and construct additional search phrases for all
other mapped cultures.

By consciously designing the application so that it enables the user to select the language culture at the time of
installation, one can prevent a "forced install" in the local language culture derived from the PC's regional settings.
By designing the application to install and load all—and not just the user-selected culture files, designers bestow it
with the capability of being re-started in another culture.

By leveraging the facility available to set the user interface (UI) culture property in report controls, reports
generated in the native locale can be toggled into another locale. As a result, the application will be able to
support recasting of data, reports and charts generated in one language into another.

In this manner, product managers and designers can combine sophisticated features available in the .NET
technology stack with an innovative design approach in order to deliver the next level of multilingual support in a
software product, with the overall goal of improving usability and boosting productivity.

Multilingual Support in Custom-developed Applications

Apart from usability and productivity, compliance considerations will increasingly raise the bar on the level of
multilingual support demanded from software applications. This trend has already been noticed during
implementations of the Single Euro Payments Area (SEPA) regulation among banks and corporations operating in
different countries in Europe.

At one such pan-European SEPA implementation, the system landscape was comprised of a payments product
processor, a trans-European liquidity manager, a Society for Worldwide Interbank Financial Telecommunication
(SWIFT) gateway, and a sanctions-screening product, which was meant to block cross-border fund transfers
suspected of having links to terrorism, money laundering, and other nefarious activities.

Since SEPA intrinsically involves cross-border fund transfers, all transactions had to be screened by the sanctions

Page 2 of 3Taking Multilingual Support to the Next Level

Monday, August 17, 2009http://www.technologyevaluation.com/Research/ResearchHighlights/BusinessI...

7596.609

screening application, which would approve a transaction or block it depending upon the outcome of verifications
being implemented against various hot lists. Having been built with a fairly sophisticated level of multilingual
support this application supported the extended character set of national languages of all the European countries
complying with SEPA. Therefore, it was able to handle German umlauts and other accent symbols in various
European languages. For example, it could treat the German name "Müller" differently from "Muller", which is
derived simplistically and incorrectly by ignoring the umlaut symbol.

Now, since the existing legacy payment product processor did not support an extended character set, there was a
strong potential for mismatch between the various systems included in the system landscape whenever a term
contained umlauts or other special characters (`, ´, ˚, ˜, etc.) commonly found in non-English European languages.

What Options Does the Solution Architect Have?

The simplistic approach of dropping all special characters (e.g., by treating "Müller" as "Muller") will lead to: (a)
passing of a transaction that is meant to be blocked; or (b) blocking of a genuine transaction. In the first case, the
company risks non-compliance with regulations relatin to terrorism and money laundering. By introducing a "false
positive," the second case leads to the risks of customer dissatisfaction and higher repair costs when the error is
realized later and has to be manually fixed. In other words, a solution architect cannot afford to take a simplistic
approach.

On the other hand, by incorporating extended character sets into all applications, the solution architect can help
the company avoid these risks altogether since there won't be any mismatch between the various applications in
the SEPA system landscape in the event that fund transfer instructions contain special characters.

But if this change turns out to be too far-reaching to implement immediately, the solution architect could, in the
short term, tweak all applications to use generally-accepted English equivalents for non-English accents. For
example, "Mueller" for "Müller" in the above example is derived by substituting the umlaut symbol with an "e" as
per standard convention instead of ignoring the umlaut symbol.

In the medium term, the solution architect could evangelize the adoption of latest standards and technology
stacks that support extended character sets and concurrent multilingual support.

About the Author

Ketharaman Swaminathan is founder and CEO of GTM360 Marketing
Solutions Private Limited, a business-to-business technology marketing
solutions company that helps high-tech companies maximize value from
their ideas, products, and capabilities.

Ketharaman has a unique IT products and services background acquired
from a career spanning more than two decades at Fujitsu, Oracle, Ramco,
Wipro, and other leading technology companies in India and abroad.

Throughout his career, Ketharaman has developed frameworks related to
differentiators, marketability, price forecasting, usage-based pricing, and
other elements of go-to-market. He has also authored several articles and
blog posts on go-to-market, Web 2.0, software usability, return on
investment (ROI) of enterprise resource planning (ERP), and ERP

customization.

Ketharaman graduated from Indian Institute of Technology Bombay with a bachelor's degree in technology. He
subsequently earned a master's degree in marketing management from Jamnalal Bajaj Institute of Management
Studies Bombay. He is based in Pune (India), and can be reached at s.ketharaman@gtm360.com.

Page 3 of 3Taking Multilingual Support to the Next Level

Monday, August 17, 2009http://www.technologyevaluation.com/Research/ResearchHighlights/BusinessI...

